Fermentative hydrogen production using pretreated microalgal biomass as feedstock

نویسندگان

  • Jianlong Wang
  • Yanan Yin
چکیده

Microalgae are simple chlorophyll containing organisms, they have high photosynthetic efficiency and can synthesize and accumulate large quantities of carbohydrate biomass. They can be cultivated in fresh water, seawater and wastewater. They have been used as feedstock for producing biodiesel, bioethanol and biogas. The production of these biofuels can be integrated with CO2 mitigation, wastewater treatment, and the production of high-value chemicals. Biohydrogen from microalgae is renewable. Microalgae have several advantages compared to terrestrial plants, such as higher growth rate with superior CO2 fixation capacity; they do not need arable land to grow; they do not contain lignin. In this review, the biology of microalgae and the chemical composition of microalgae were briefly introduced, the advantages and disadvantages of hydrogen production from microalgae were discussed, and the pretreatment of microalgal biomass and the fermentative hydrogen production from microalgal biomass pretreated by different methods (including physical, chemical, biological and combined methods) were summarized and evaluated. For the production of biohydrogen from microalgae, the economic feasibility remains the most important aspect to consider. Several technological and economic issues must be addressed to achieve success on a commercial scale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation

BACKGROUND Microalgal biomass contains a high level of carbohydrates which can be biochemically converted to biofuels using state-of-the-art strategies that are almost always needed to employ a robust pretreatment on the biomass for enhanced energy production. In this study, we used an ultrasonic pretreatment to convert microalgal biomass (Scenedesmus obliquus YSW15) into feasible feedstock for...

متن کامل

Feasibility of CO2 mitigation and carbohydrate production by microalga Scenedesmus obliquus CNW-N used for bioethanol fermentation under outdoor conditions: effects of seasonal changes

BACKGROUND Although outdoor cultivation systems have been widely used for mass production of microalgae at a relatively low cost, there are still limited efforts on outdoor cultivation of carbohydrate-rich microalgae that were further used as feedstock for fermentative bioethanol production. In particular, the effects of seasonal changes on cell growth, CO2 fixation, and carbohydrate production...

متن کامل

Effect of Zinc oxide Nanoparticles on Hyacinth’s Fermentation

In this study bio-hydrogen and bioethanol were produced from dry biomass of water hyacinth by microbial fermentation under influence of zinc oxide nanoparticles. For fermentative bio-hydrogen production biomass was first pretreated and then saccharified into fermentable sugars by enzymes. Sugars of enzymatic hydrolysis were xylose and glucose with concentration of 9.0% and 8.0% respectively. Fo...

متن کامل

Succinate production from CO2-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing

The potential for production of chemicals from microalgal biomass has been considered as an alternative route for CO₂ mitigation and establishment of biorefineries. This study presents the development of consolidated bioprocessing for succinate production from microalgal biomass using engineered Corynebacterium glutamicum. Starch-degrading and succinate-producing C. glutamicum strains produced ...

متن کامل

Subcritical Water Technology for Enhanced Extraction of Biochemical Compounds from Chlorella vulgaris

Subcritical water extraction (SWE) technology has been used for the extraction of active compounds from different biomass materials with low process cost, mild operating conditions, short process times, and environmental sustainability. With the limited application of the technology to microalgal biomass, this work investigates parametrically the potential of subcritical water for high-yield ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2018